Deep Learning(이하 DL)은 배우기 쉬운데 어려운, 굉장히 아이러니한 분야가 되어가고 있습니다. 강력하고 좋은 프레임워크와 튜토리얼들이 배움과 사용의 문턱을 굉장히 낮추어 주었습니다. 이는 동전의 양면처럼 장단점이 극명하게 나뉘는 결과를 초래했습니다. 문턱이 낮아지면서 다양한 아이디어와 기술들이 분야에 기여하고, 흥미 있고 능력있는 친두들을 일찍 발굴해 내는 등의 장점이 있습니다. 동시에 레토르트 식품을 서빙하는 식당들이 많아지고 있습니다. 모델에 대한 이해 없이 하이퍼파라메타와 데이터셋만 조금 바꾸어 결과를 뽑아 사용하는 말 그대로 밑바닥이 부족한 사용자들도 속출하는 듯 합니다.

Continue reading

GANs in Action

정말 오랜만에 리뷰하는 인공지능 관련도서입니다! 이 책은 인공지능에서 가장 도전적인 분야 중 하나인 생성모델 중에서 적대적 생성모델(Generative Adversarial Nets 이하 GAN)을 전반적으로 다루고 있습니다. 큰 파장을 불러온 바닐라 GAN을 시작으로 GAN분야에서도 새 지평을 열어준 CGAN, CycleGAN까지 다루면서 GAN의 국한해서는 생성모델의 주요한 발전사를 옅볼수 있는 책입니다. 생성모델에 GAN 위주의 이야기가 나오지만 GAN이외에도 다야한 모델들이 있다는 것은 알아 두시면 좋을 것 같습니다. 인공지능 분야에서도 직관적이지도 않고 수학적 난이도도 있는 분야이다 보니 일정 수준에 오른 독자들이 읽기를 권하고 있습니다.

Continue reading

Deep Learning을 공부하거나 프로젝트를 진행하려면 GPU는 필수적입니다. 저의 경우는 GTX 970모델을 이용 중이었지만 학습으로 갈궈지고, 오버워치를 하다가 퍽 하고 전원이 나가더니 죽어버리는 불상사를 겪었습니다. 졸업 프로젝트로 Deep Learning관련 프로젝트를 진행하고 있어서 GPU가 절대적으로 필요한 상황이었는데 그나마 있던 GPU가 죽어서 정말 곤란한 상황이 되었습니다. 그러던 중 머신러닝 플랫폼 서비스를 오픈해서 베타 서비스를 진행중인 Cheetah라는 플랫폼을 알게 되었습니다. 마침 베타 테스터들에게 한달간 무료로 GPU 서버를 대여 해주고 있어서 RTX 2080TI 서버를 대여해 사용할 수 있었습니다.

Continue reading

저는 언제나 처럼 간단하게 이게 어떤 개념인지만 짚고 넘어가겠습니다. 자세한 내용은 다른 학술 블로그들을 참조해 주세요! GAN관련 논문이나 자료들을 읽다 보면은 심심치 않게 mode collapse라는 말을 발견 할 수 있습니다. 여기서 mode는 수학에서 말하는 최빈값입니다. 즉 제일 자주 등장하는 값들을 말합니다. mode collapse는 보통 Multi-Modal일 경우 두드러지게 발생 할 수 있습니다. 튜토리얼로 자주 사용하는 MNIST의 경우 ‘0~9’ 10개의 mode를 갖게 됩니다. Generator G가 input z를 하나의 mode에 치우쳐 변화시키는 현상이 발생합니다.

Continue reading

저는 언제나 처럼 간단하게 이게 어떤 개념인지만 짚고 넘어가겠습니다. 자세한 내용은 다른 학술 블로그들을 참조해 주세요! 그럼 이번 글에서는 Norm에 대한 개념을 간단하게 잡아 봅시다! What is Norm? Norm은 수학적으로 벡터 공간 또는 행렬에 있는 모든 벡터의 전체 크기, 길이를 의미합니다. 단순화를 위해 표준이 높을수록 행렬 또는 벡터의 값이 커집니다. p: Norm의 차수(p의 차수에 따라 L0, L1, L2 결정) N: 대상 벡터의 요소 수 L0 Norm 실제로 Norm은 아닙니다. 벡터의 0이 아닌 요소의 총 개수를 의미합니다.

Continue reading

이 책은 다른 머신러닝 도서가 그렇듯이 인공지능이 어떤 역사를 가지고 발전했는지로 이야기를 시작합니다. 머신러닝에서 사용되는 전반인 용어와 표기법에 대한 정의로 글을 시작하기 때문에 입문서로 큰 장점이라고 생각됩니다. 입문서라고 나온 도서들 중에도 번역된 용어와 원어가 혼재되어 사용되어 인터넷에서 얻는 자료와 용어차이에서 오는 괴리감이 있는데 이 책은 그 부분을 해결 해주는 부분이 있습니다. 파이썬에 익숙하지 않은 사용자를 위해서 패키지 관리를 위해 pip와 conda에 대한 사용법도 제시하고 있습니다. 하지만 파이썬 문법에 대한 설명이 없기 때문에 파이썬은 어느 정도 익힌 다음에 읽는 것을 추천합니다.

Continue reading

Index Intro Related Work Model Architecture Dataset and Preprocessing Architecture Parmeters and Training Experimental Results Conclusion 이 논문에서 사용하는 모델은 Generative adversarial network(GAN)에 기반을 두고 있습니다. Ian Goodfellow et al1에서 제안 된 기존의 모델에서는 Generator G와 Discriminator D가 존재 합니다. G는 노이즈를 실제 데이터 처럼 만드는 역할을 합니다. D는 G가 만들어낸 가짜 데이터와 실제 데이터를 구별하는 역할을 합니다. Music domain transfer이기 때문에 input데이터는 노이즈가 아니라 실제 음악 데이터이고, 본 논문에서는 음악 데이터중에서 MIDI 데이터를 사용합니다.

Continue reading

Author's picture

Sihan Son

Wir müssen wissen, Wir werden wissen
2020 & 2021 Hanbit reviewer
Manager of VAIS(AI & Vision community)

Programmer

Korea